Electric Actuators LEPY／LEPS Series

Miniature Rod Type／Miniature Slide Table Type
Step Motor（Servo／24 VDC）
Compact and •Maximum pushing force： 50 Nlightweight－Positioning repeatability：$\pm 0.05 \mathrm{~mm}$－Can set position，speed and force（64 points）
Slide Table Type LEPS Series

Epys
Epys

Linear guide integrated
Step Motor（Servo／24 VDC）Controllers／Drivers

Compact and lightweight

Application Examples

Variations

Type	Size	Screw lead	Pushing force [N$]$		Max. work load [kg] (Horizontal)		Max. work load [kg] (Vertical)		Max. speed [mm/s] (Horizontal)		Stroke [mm]	Page
			Basic	Compact	Basic	Compact	Basic	Compact	Basic	Compact		
Rod type LEPY Series	6	4	14 to 20	-	2.0	-	0.5	-	150	-	$\begin{aligned} & 25 \\ & 50 \\ & 75 \end{aligned}$	485
		8	7 to 10	-	1.0	-	0.25	-	300	-		
	10	5	25 to 50	24 to 40	6.0	4.0	1.5	1.5	200	200		
		10	12.5 to 25	12 to 20	3.0	2.0	1.0	1.0	350	350		
Slide table type LEPS Series	6	4	14 to 20	-	1.0	-	0.5	-	150	-	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	495
		8	7 to 10	-	0.75	-	0.25	-	300	-		
	10	5	25 to 50	24 to 40	2.0	2.0	1.5	1.5	200	200		
		10	12.5 to 25	12 to 20	1.5	1.5	1.0	1.0	350	350		

Mounting Variations
Mounting from various directions

Motor Cable Entry Direction

Can be selected from 4 directions

تٌ
 $\stackrel{\sim}{3}$

 コ $\underset{\text { E }}{ }$ Ј
先 플

Step Motor (Servo/24 VDC)

Electric Actuator/Miniature Rod Type LEPY Series

Model Selection

p. 485

How to Order .. 489
Specifications ... 492
Construction ... 492
Dimensions ... p. 493
Step Motor (Senvo/24 VDC)
Electric Actuator/Miniature Slide Table Type LEPS Series

Step Motor (Servo/24 VDC) Controller

3-Axis Step Motor Controller

4-Axis Step Motor (Servo/24 VDC) Controller

Parallel I/O Type/JXC73/83 Series

p. 749

EtherNet/IPTM Type/JXC93 Series ... 749

Electric Actuators

Miniature Rod Type LEPY Series

LEPY Series \downarrow p. 489

Selection Procedure

Positioning Control Selection Procedure

Step 2 Check the cycle time.

Selection Example

Operating

 conditions- Workpiece mass: 0.2 [kg]
- Speed: 200 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 40 [mm]
-Workpiece mounting condition: Vertical upward downward transfer

Step 1
Check the work load-speed. <Speed-Work load graph>
Select a model based on the workpiece mass and speed while referencing the speed-work load graph.
Selection example) The LEPY6J can be temporarily selected as a possible candidate based on the graph shown on the right side.

<Speed-Work load graph> (LEPY6/Step motor)

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to page 380 for the horizontal work load in the specifications, and page 492 for the precautions.

Step 2
 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load, and in position of the step data. Therefore, calculate the settling time while referencing the following value.

$$
\mathrm{T} 4=0.2[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=200 / 3000=0.067[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=200 / 3000=0.067[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{40-0.5 \cdot 200 \cdot(0.067+0.067)}{200}=0.133[\mathrm{~s}]$
$\mathrm{T} 4=0.2[\mathrm{~s}]$
The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.067+0.133+0.067+0.2=\mathbf{0 . 4 6 7}[\mathrm{s}]$

L : Stroke [mm] ... (Operating condition)
V : Speed [mm/s] \cdots (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the
constant speed operation to stop
T4: Settling time [s] ... Time until positioning is completed

Selection Procedure

Pushing Control Selection Procedure

The duty ratio is a ratio of the operation time in one cycle．

Selection Example

Operating conditions

Step 1

Check the duty ratio．

＜Conversion table of pushing force－duty ratio＞
Select the［Pushing force］from the duty ratio while referencing the conversion table of pushing force－duty ratio．
Selection example）
Based on the table below，
－Duty ratio： 70 ［\％］
The pushing force set value will be 80 ［\％］．
＜Conversion table of pushing force－duty ratio＞
（LEPY10L）

Pushing force set value［\％］	Duty ratio ［\％］	Continuous pushing time［min］
70 or less	100	-
80	70	10
100	50	5

＊［Pushing force set value］is one of the step data input to the controller．
＊［Continuous pushing time］is the time that the actuator can continuously keep pushing．

Step 2 Check the pushing force．

＜Pushing force set value－Force graph＞

Select a model based on the pushing force set value and force while referencing the pushing force set value－force graph．
Selection example）
Based on the graph shown on the right side，
－Pushing force set value： 75 ［\％］
－Pushing force： $30[\mathrm{~N}]$
The LEPY10LK can be temporarily selected as a possible candidate．

Step 3
 Check the lateral load on the rod end．

＜Allowable lateral load on the rod end＞
Confirm the allowable lateral load on the rod end of the actuator：
LEPY10L，which has been selected temporarily while referencing the
allowable lateral load on the rod end．
Selection example）
Based on the table below，
\bullet－Jig weight： $0.05[\mathrm{~kg}] \approx 0.5[\mathrm{~N}]$
The lateral load on the rod end is within the allowable range．
＜Allowable lateral load on the rod end＞

Model	Allowable lateral load on the rod end［N］
LEPY6（Basic）	0.50
LEPY10（Basic）	1.0
LEPY10L（Compact）	1.0

＜Pushing force set value－Force graph＞ （LEPY10L）

LEPY Series

Step Motor (Servo/24 VDC)

Speed-Work Load Graph (Guide)

LEPY6 (Basic)

Horizontal

Vertical

LEPY10L (Motor size: Compact)

Vertical

LEPY10 (Motor size: Basic)

Horizontal

Vertical

* The maximum value of the work load for the positioning operation. An external guide is necessary to support the load.

The actual work load and transfer speed change according to the condition of the external guide.

Pushing Force Set Value－Force Graph（Guide）

LEPY6（Basic）

LEPY10L（Compact）

Pushing force set value $[\%]$	Duty ratio $[\%]$	Continuous pushing time［min］
60 or less	100	-
70	30	3
100	15	1

Pushing force set value［\％］	Duty ratio ［\％］	Continuous pushing time［min］
70 or less	100	-
80	70	10
100	50	5

＊1 Set values for the controller

Allowable Lateral Load on the Rod End

Model	Allowable lateral load on the rod end［N］
LEPY6（Basic）	0.50
LEPY10（Basic）	1.0
LEPY10L（Compact）	1.0

Electric Actuator Miniature Rod Type LEPY Series Lepyg, 10

(2) Motor size

Symbol	Motor size	Applicable size
Nil	Basic	6,10
\mathbf{L}	Compact	10

| 3 Lead screw type [mm] |
| :---: | :---: | :---: |
| Symbol Screw lead
 LEPY6
 LEPY10
 K 4
 J 8 |

$\mathbf{4}$ Stroke [mm]	
Symbol	Stroke
$\mathbf{2 5}$	25
$\mathbf{5 0}$	50
$\mathbf{7 5}$	75

5 Motor cable mounting direction

Nil	Top entry		Entry on the left side
\mathbf{U}			
	Bottom entry		

6 Actuator cable type/length*2

Standard cable $[\mathrm{m}]$	
Nil	None
S1	1.5
S3	3
S5	5

Robotic cable		[m]		
R1	1.5	RA	$10^{* 1}$	
R3	3	RB	$15^{* 1}$	
R5	5	RC	$20^{* 1}$	
R8	$8^{* 1}$			

			In
（Communication protocol／Input／Output）			
E	EtherCAT ${ }^{\text {® }}$	L	IO－Link
9	EtherNet／／PTM	M	CC－Link Ver 1.10
P	PROFINET	5	Parallel input（NPN）
D	DeviceNet ${ }^{\text {TM }}$	6	Parallel input（PNP）

－Mounting
（Communication protocol／Input／Output）

$\mathbf{7}$	Screw mounting
$\mathbf{8}^{* 7}$	DIN rail

For single axis

Communication plug connector I／O cable＊8

Symbol	Type	Applicable interface
$\mathbf{N i l}$	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\text {TM }}$
\mathbf{T}	T－branch type communication plug connector	CC－Link Ver 1.10
$\mathbf{1}$	I／O cable $(1.5 \mathrm{~m})$	Parallel input（NPN）
$\mathbf{3}$	I／O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I／O cable $(5 \mathrm{~m})$	

$L E C \square$ Series（For details，refer to page 491．）

$\mathbf{8}$ I／O cable length＊5

Nil	Without cable （Without communication plug connector）
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 6}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 6}$

＊1 Produced upon receipt of order（Robotic cable only）
＊2 The standard cable should only be used on fixed parts． For use on moving parts，select the robotic cable．
Refer to page 758 if only the actuator cable is required．
＊3 For details on controllers／drivers and compatible motors，refer to the compatible controllers／drivers on the next page．
＊4 When pulse signals are open collector，order the current limiting resistor（LEC－PA－R－\square ）on page 736 separately．
＊5 When＂Without controller／driver＂is selected for controller／driver types， I／O cable cannot be selected．Refer to page 724 （For LECP1），or page 736 （For LECPA）if I／O cable is required．
＊6 When＂Pulse input type＂is selected for controller／driver types，pulse input usable only with differential．Only 1.5 m cables usable with open collector
＊7 The DIN rail is not included．It must be ordered separately．
＊8 Select＂Nil＂for anything other than DeviceNet ${ }^{\text {TM }}$ ，CC－Link，or parallel input．
Select＂Nil，＂＂S，＂or＂T＂for DeviceNet ${ }^{\text {TM }}$ or CC－Link．
Select＂Nil，＂＂1，＂＂3，＂or＂ 5 ＂for parallel input．

\triangle Caution

［CE－compliant products］

（1）EMC compliance was tested by combining the electric actuator LEP series and the controller LEC／JXC series．
The EMC depends on the configuration of the customer＇s control panel and the relationship with other electrical equipment and wiring． Therefore，compliance with the EMC directive cannot be certified for SMC components incorporated into the customer＇s equipment under actual operating conditions．As a result，it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole．
［UL－compliant products（For the LEC series）］
When compliance with UL is required，the electric actuator and controller／ driver should be used with a UL1310 Class 2 power supply．

The actuator and controller／driver are sold as a package．
Confirm that the combination of the controller／driver and the actuator is correct．

＜Check the following before use．＞

（1）Check the actuator label for the model number．This number should match that of the controller／driver．
（2）Check that the Parallel I／O configuration matches （NPN or PNP）．
＊Refer to the Operation Manual for using the products．Please download it via our website：https：／／www．smcworld．com

LEPY Series

Step Motor (Servo/24 VDC)

Compatible Controllers/Drivers

Type	EtherCAT® direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {tm }}$ direct input type	IO-Link direct input type	CC-Link direct input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1
Features	EtherCAT® ${ }^{\circledR}$ direct input	EtherNet//Pтм direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)					
Max. number of step data	64 points					
Power supply voltage	24 VDC					
Reference page	741					

Type	Step data input type	Programless type	Pulse input type
Series	$\begin{aligned} & \hline \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	LECP1	LECPA
Features	Parallel I/O	Capable of setting up operation (step data) withou using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)		
Max. number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	706-1	719	731

Specifications

Weight

Model		LEPY6		
Stroke［mm］	25	50	75	
Product weight［kg］	Basic	0.24	0.29	0.34

Model		LEPY10		
Stroke［mm］	25	50	75	
Product weight［kg］	Basic	0.47	0.55	0.65
	Compact	0.41	0.49	0.59

Model				LEPY6		LEPY10	
	Screw lead［mm］			4	8	5	10
	Pushing force$[\mathrm{N}]^{* 1 * 6}$		Basic	14 to 20	7 to 10	25 to 50	12.5 to 25
			Compact	－	－	24 to 40	12 to 20
	$\begin{aligned} & \text { Work load } \\ & {[\mathrm{kg}]^{* 2} * 3 * 6} \end{aligned}$	Horizontal	Basic	2.0	1.0	6.0	3.0
			Compact	－	－	4.0	2.0
		Vertical	Basic	0.5	0.25	1.5	1.0
			Compact	－	－	1.5	1.0
	Speed$[\mathrm{mm} / \mathbf{s}]^{* 3 * 6}$	Horizontal	Basic	10 to 150	20 to 300 ＊4	10 to 200	20 to 350 ＊4
			Compact	－	－	10 to 200	20 to $350 * 4$
		Vertical	Basic	10 to 150	20 to $300 * 4$	10 to 150	20 to $300 * 4$
			Compact	－	－	10 to 150	20 to $300 * 4$
	Pushing speed［mm／s］＊5			10	20	10	20
	Acceleration／Deceleration［mm／s ${ }^{2}$ ］			3000			
	Backlash［mm］			0.2 or less			
	Positioning repeatability［mm］			± 0.05			
	Lost motion［mm］＊${ }^{* 7}$			0.2 or less			
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 8}$			50／20			
	Actuation type			Slide screw			
	Guide type			Sliding bushing			
	Max．operating frequency［c．p．m］			60			
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40			
	Operating humidity range［\％RH］			90 or less（No condensation）			
	Motor size			$\square 20$		$\square 28$	
	Motor type			Step motor（Servo／24 VDC）			
	Encoder			Incremental A／B phase（800 pulse／rotation）			
	Rated voltage［V］			24 VDC $\pm 10 \%$			
	Power consumption［W］＊9		Basic	12		28	
			Compact	－		22	
	Standby power consumption when operating［W］＊10		Basic	11		22	
			Compact	－		16	
	Max．instantaneous power consumption $[W]^{* 11}$		Basic	22		55	
			Compact	－		45	

＊1 Pushing force accuracy is LEPY6：$\pm 30 \%$（F．S．），LEPY $10: \pm 25 \%$（F．S．）．
Refer to pages 508 and 509 for the detailed setting range and precautions．
The pushing force and the duty ratio change according to the set value．Check the＂Pushing Force Set Value－Force Graph （Guide）＂on page 488 and［14］on page 509.
＊2 The maximum value of the work load for the positioning operation．An external guide is necessary to support the load．The actual work load and transfer speed change according to the condition of the external guide．
＊3 Speed changes according to the work load．Check the＂Speed－Work Load Graph（Guide）＂on page 487
＊4 When the stroke is 25 mm ，the maximum speed will be $250 \mathrm{~mm} / \mathrm{s}$ ．
＊5 Set to the pushing speed when pushing operation．
＊6 The speed and force may change depending on the cable length，load and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
＊7 A reference value for correcting an error in reciprocal operation
＊8 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊9 The power consumption（including the controller）is for when the actuator is operating．
＊10 The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during operation．Except during the pushing operation
＊11 The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Construction

Component Parts

No．	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Screw shaft	Stainless steel	Heat treament＋Special treatment
3	Screw nut	Stainless steel	Heat treament + Special treatment
4	Rod	Stainless steel	
5	Spider	NBR	
6	Hub	Aluminum alloy	
7	Socket	Free cutting carbon steel	Nickel plating
8	Bearing stopper	Size 6：Aluminum alloy Size 10：Carbon steel	
9	Motor plate	Aluminum alloy	Anodized
10	Guide ring	Aluminum alloy	Size 10 only
11	Bearing	－	
12	Bushing	Bearing alloy	
13	Soft wiper	－	
14	Step motor （Servo／24 VDC）	－	

LEPY Series

Dimensions

LEPY6

*1 This is the range within which the rod can move when it returns to origin.
Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 Do not apply rotational torque to the rod end.
*5 The direction of rod end width across flats ($\square 10$) differs depending on the products.

Dimensions

[mm]									
Model	L1	L2	A	B	C	\mathbf{D}	\mathbf{E}	F	G
LEPY6 $\square-25 \square$	125.6	135.6	15	21	23	28	15	28	36
LEPY6 $\square-50 \square$	156.6	166.6	22	45	30	52	22	52	60
LEPY6 $\square-75 \square$	188.6	198.6	29	70	37	77	29	77	85

Dimensions

LEPY10

Motor cable mounting direction： R（Entry on the right side）
Motor cable mounting direction： Nil（Top entry）

Mounting surface

＊1 This is the range within which the rod can move when it returns to origin．
Make sure workpieces mounted on the rod do not interfere with the workpieces and facilities around the rod
＊2 Position after returning to origin
＊3［ ］for when the direction of return to origin has changed
＊4 Do not apply rotational torque to the rod end．
＊5 The direction of rod end width across flats（ $\square 12$ ）differs depending on the products．

Dimensions

LEPS Series \downarrow p. 501

Selection Procedure

Positioning Control Selection Procedure

Check the work load-speed.
(Horizontal transfer)
Step 2 Check the cycle time.
Step 3
Check the guide allowable moment.

Selection Example

Operating conditions
-Workpiece mass: 0.25 [kg]

- Speed: 200 [mm/s]
- Acceleration/Deceleration: $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$
- Stroke: 20 [mm]
-Workpiece mounting condition: Horizontal transfer

Step 1
Check the work load-speed. <Speed-Work load graph>
Select a model based on the workpiece mass and speed while referencing the speed-work load graph.

Selection example) The LEPS6J can be temporarily selected as a possible candidate based on the graph shown on the right side.

LEPS6 (Basic)

<Speed-Work load graph> (LEPS6/Step motor)

Step 2 Check the cycle time.
Calculate the cycle time using the following calculation method. Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in position of the step data. Therefore, calculate the settling time while referencing the following value.

$$
\mathrm{T} 4=0.2[\mathrm{~s}]
$$

L : Stroke [mm] ... (Operating condition)
V : Speed [mm / s] ... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until positioning is completed

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=200 / 3000=0.067[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=200 / 3000=0.067[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{20-0.5 \cdot 200 \cdot(0.067+0.067)}{200}=0.033[\mathrm{~s}]$
$\mathrm{T} 4=0.2[\mathrm{~s}]$
The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.067+0.033+0.067+0.2=\mathbf{0 . 3 6 7}[\mathbf{s}]$
Check the guide allowable moment.

Guide allowable moment

Selection Procedure

Pushing Control Selection Procedure

＊The duty ratio is a ratio of the operation time in one cycle．

Selection Example

Operating conditions
\bullet Mounting condition：Horizontal（pushing）
－Jig weight： $0.4[\mathrm{~kg}]$
－Pushing force： 30 ［ N ］
－Speed： 150 ［mm／s］
－Stroke： 40 ［mm］

Step 1 Check the duty ratio．
＜Conversion table of pushing force－duty ratio＞
Select the［Pushing force］from the duty ratio while referencing the conversion table of pushing force－duty ratio．
Selection example）
Based on the table below，
－Duty ratio： 70 ［\％］
The pushing force set value will be 80 ［\％］．
＜Conversion table of pushing force－duty ratio＞
（LEPS10L）

Pushing force set value［\％］	Duty ratio ［\％］	Continuous pushing time［min］
70 or less	100	-
80	70	10
100	50	5

＊［Pushing force set value］is one of the step data input to the controller．
＊［Continuous pushing time］is the time that the actuator can continuously keep pushing．

Step 2 Check the pushing force．

＜Pushing force set value－Force graph＞
Select a model based on the pushing force set value and force while referencing the pushing force set value－force graph．
Selection example）
Based on the graph shown on the right side，
－Pushing force set value： 75 ［\％］
－Pushing force： 30 ［ N ］
The LEPS10LK can be temporarily selected as a possible candidate．

Step 3 Check the guide allowable moment．

＜Pushing force set value－Force graph＞ （LEPS10L）

LEPS Series

Step Motor (Servo/24 VDC)

Speed-Work Load Graph (Guide)

LEPS6 (Basic)

Horizontal

Vertical

LEPS10(L) (Motor size: Basic/Compact)
Horizontal

Pushing Force Set Value-Force Graph (Guide)

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
70	100	-
80	70	10
100	50	5

LEPS10 (Basic)

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
60 or less	100	-
70	30	3
100	15	1

LEPS10L (Compact)

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
70 or less	100	-
80	70	10
100	50	5

.등 Load overhanging direction

[mm]	M	
	LEPS6	
	LEPS6 \square-25	LEPS6 \square-50
X		

LEPS10

LEPS Series

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Dynamic Allowable Moment

Acceleration/Deceleration
$3000 \mathrm{~mm} / \mathrm{s}^{2}$

Static Allowable Moment

Model	Allowable moment［N．m］		
	Pitch moment	Yaw moment	Roll moment
	$\mathbf{M p}$	$\mathbf{M y}$	$\mathbf{M r}$
LEPS6	1.07	1.07	2.51
LEPS10	2.55	2.55	5.47

Traveling Parallelism

Traveling parallelism	25	50
	0.05 mm or less	0.1 mm or less

Table displacement due to pitch moment load（marked with the arrow）

Table displacement due to yaw moment load（marked with the arrow）

Table displacement due to roll moment load（marked with A）

LEPS6

LEPS10

LEPS6

LEPS6

LEPS10

LEPS10

Electric Actuator Miniature Slide Table Type LEPS Series Leps6, 10

For details on controllers, refer to page 502.
(2) Motor size

Symbol	Motor size	Applicable size
Nil	Basic	6,10
\mathbf{L}	Compact	10

3 Lead screw type [mm]

Symbol	Screw lead	
	LEPS6	LEPS10
K	4	5
\mathbf{J}	8	10

4 Stroke [mm]	
Symbol	Stroke
$\mathbf{2 5}$	25
$\mathbf{5 0}$	50

5 Motor cable mounting direction

Nil	Top entry		Entry on the left side
\mathbf{U}	Bottom entry		

6 Actuator cable type/length*2

Standard cable $[\mathrm{m}]$	
Nil	None
S1	1.5
S3	3
S5	5

Robotic cable

R1	1.5	RA	$10^{* 1}$
R3	3	RB	$15^{* 1}$
R5	5	RC	$20^{* 1}$
R8	$8^{* 1}$		

 -

LEPS Series

Step Motor (Servo/24 VDC)

Compatible Controllers/Drivers

Type	EtherCAT® direct input type	EtherNet/IPTM direct input type	PROFINET direct input type	DeviceNet ${ }^{\text {tm }}$ direct input type	IO-Link direct input type	CC-Link direct input type
Series	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1
Features	EtherCAT® ${ }^{\circledR}$ direct input	EtherNet//Pтм direct input	PROFINET direct input	DeviceNet ${ }^{\text {TM }}$ direct input	IO-Link direct input	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)					
Max. number of step data	64 points					
Power supply voltage	24 VDC					
Reference page	741					

| | Step data
 input type | Programless type | Pulse input type |
| :--- | :---: | :---: | :---: | :---: |
| Type | | | |
| Series | | | |

Electric Actuator Miniature Slide Table Type

Specifications

Weight

Model		LEPS6	
Stroke［mm］		25	50
Product weight［kg］	Basic	0.29	0.35
Model		LEPS10	
Stroke［mm］		25	50
Product weight［kg］	Basic	0.56	0.65
	Compact	0.50	0.59

Model				LEPS6		LEPS10	
	Screw lead［mm］			4	8	5	10
	Pushing force$[\mathrm{N}]^{* 1 * 6}$		Basic	14 to 20	7 to 10	25 to 50	12.5 to 25
			Compact	－	－	24 to 40	12 to 20
	Work load $[\mathbf{k g}]^{* 2 * 3 * 6}$	Horizontal	Basic	1.0	0.75	2.0	1.5
			Compact	－	－	2.0	1.5
		Vertical	Basic	0.5	0.25	1.5	1.0
			Compact	－	－	1.5	1.0
	Speed$[\mathrm{mm} / \mathrm{s}]^{* 3 * 6}$	Horizontal	Basic	10 to 150	20 to $300 * 4$	10 to 200	20 to 350 ＊
			Compact	－	－	10 to 200	20 to 350＊4
		Vertical	Basic	10 to 150	20 to 300＊4	10 to 150	20 to $300 * 4$
			Compact	－	－	10 to 150	20 to $300 * 4$
	Pushing speed［mm／s］＊5			10	20	10	20
	Acceleration／Deceleration［mm／s ${ }^{2}$ ］			3000			
	Backlash［mm］			0.2 or less			
	Positioning repeatability［mm］			± 0.05			
	Lost motion［mm］＊7			0.2 or less			
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 8}$			50／20			
	Actuation type			Slide screw			
	Guide type			Linear guide			
	Max．operating frequency［c．p．m］			60			
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40			
	Operating humidity range［\％RH］			90 or less（No condensation）			
	Motor size			$\square 20$		$\square 28$	
	Motor type			Step motor（Servo／24 VDC）			
	Encoder（Angular displacement sensor）			Incremental A／B phase（800 pulse／rotation）			
	Rated voltage［V］			24 VDC $\pm 10 \%$			
	Power consumption［W］＊9		Basic	12		28	
			Compact	－		22	
	Standby power consumption when operating $[W]^{* 10}$		Basic	11		22	
			Compact	－		16	
	Max．instantaneous power consumption［W］＊11		Basic	22		55	
			Compact	－		45	

＊1 Pushing force accuracy is LEPS6：$\pm 30 \%$（F．S．），LEPS10：$\pm 25 \%$（F．S．）．
Refer to pages 508 and 509 for the detailed setting range and precautions．The pushing force and the duty ratio change according to the set value．Check the＂Pushing Force Set Value－Force Graph（Guide）＂on page 497 and［14］on page 509.
＊2 The maximum value of the work load for the positioning operation．Check the＂Dynamic Allowable Moment＂graph for the allowable moment of the guide on pages 498 and 499 ．
＊3 Speed changes according to the work load．Check the＂Speed－Work Load Graph（Guide）＂on page 497.
$* 4$ When the stroke is 25 mm ，the maximum speed will be $250 \mathrm{~mm} / \mathrm{s}$ ．
＊5 Set to the pushing speed when pushing operation．
＊6 The speed and force may change depending on the cable length，load and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20\％）
＊ 7 A reference value for correcting an error in reciprocal operation
＊8 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was pertormed with the actuator in the initial state．）
＊ 9 The power consumption（including the controller）is for when the actuator is operating．
＊10 The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during operation．Except during the pushing operation
＊11 The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．

Construction

Component Parts

No．	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Screw shaft	Stainless steel	Heat treamment＋Special treatment
3	Screw nut	Stainless steel	Heat treatment＋Special treatment
4	Table	Aluminum alloy	Anodized
5	Linear guide	-	
6	Rod	Stainless steel	
7	Spider	NBR	
8	Hub	Aluminum alloy	
9	Socket	Free cutting carbon steel	Nickel plating
10	Bearing stopper	Size 6：Aluminum alloy Size 10：Carbon steel	
11	Motor plate	Aluminum alloy	Anodized
12	Guide ring	Aluminum alloy	Size 10 only
13	Bearing	-	
14	Bushing	Bearing alloy	
15	Soft wiper	-	
16	Step motor Servo／24 VDC）	-	

LEPS Series

Step Motor (Servo/24 VDC)

Dimensions

LEPS6

*1 This is the range within which the table can move when it returns to origin.
Make sure workpieces mounted on the table do not interfere with the workpieces and facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed

Dimensions

Dimensions

Model	L1	L2	L3	A	B	C	D	E	F	G	J
LEPS6 $\square-25 ~$											
M	127.1	138.6	11.5	16.5	21	24.5	28	16.5	28	36	76.4
LEPS6 $\square-50 \square$	156.6	169.6	13	22	45	30	52	22	52	60	107.4

Dimensions

LEPS10

Motor cable mounting direction U（Bottom entry）

＊This is the range within which the table can move when it returns to origin．
Make sure workpieces mounted on the table do not interfere with the workpieces and facilities around the table
＊2 Position after returning to origin
＊3［ ］for when the direction of return to origin has changed

Dimensions

LEPY/LEPS Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions.

Design / Selection

\triangle Warning

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable lateral load on the rod end. If the product is used outside of the specification limits, the eccentric load applied to the rod will be excessive and have adverse effects such as the generation of play on the sliding parts of the rod, reduced accuracy, or reduced service life of the product may occur.
2. Do not use the product in applications where excessive external force (including vibration) or impact force is applied to it.
Do not apply impact and vibration outside of the specifications. This can cause a malfunction
3. If gravity acts on the workpiece due to vertical mounting, it may drop due to its own weight depending on the conditions when the product is not energized (SVON signal is OFF) or stopped (EMG is not energized).
4. Power failure may result in a decrease in the pushing force; ensure that safety measures are in place to prevent injury to the operator or damage to the equipment.
When the product is used for clamping, the clamping force could be decreased due to power failure, potentially creating a hazardous situation in which the workpiece is released.
5. This product cannot be used as a stopper.

Excessive load acts on the actuator, which adversely affects the operation and the life of the product.

Mounting

© Warning

1. Do not drop or hit the actuator to avoid scratching and denting the mounting surfaces.
Even a slight deformation can cause the deterioration of accuracy and operation failure.
2. When mounting workpieces or jigs to the rod end, hold the flats of the rod end with a wrench so that the rod does not rotate (Rod type only).
When attaching a nut or workpiece to the end of the rod, hold the flats of the rod end with a wrench (the rod should be fully retracted). Do not apply tightening torque to the rod non-rotating mechanism. The rod is manufactured to precise tolerances, so even a slight deformation may cause a malfunction and damage.

Mounting

\triangle Warning

3. When mounting a bolt, workpieces, or jig to the rod end, the bolt should be tightened with a torque within the specified range (Rod type only).
Tightening to a torque higher than the specified value may cause a malfunction due to the deformation of the component, whilst under-tightening can cause displacement of the mounting position or in extreme conditions detaching of the workpiece. If the bolt is screwed in more than the maximum depth, the lead screw will be damaged, leading to operation failure.

Model	Thread size	Max tightening torquen $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$	Rod end width arcoss flats $[\mathrm{mm}]$
LEPY6	$\mathrm{M} 4 \times 0.7$	1.4	7	10
LEPY10	$\mathrm{M} 5 \times 0.8$	3.0	9	12

4. The angular position of the rod end flats cannot be changed because the rod has a non-rotating mechanism inside (Rod type only).
The angular position of the rod end flats is not specified; it depends on the actuator type.
The rod rotates slightly due to the clearance of the non-rotating mechanism: Install the bolt or workpiece with consideration to the rotation.
5. When attaching the workpiece to the table, hold the table and tighten the screws with a torque within the specified range (Slide table type only).
The table is supported by a linear guide, do not apply impact or moment when mounting the work load.
If the screws are screwed to more than the maximum screw-in depth, it may lead to a malfunction due to damage of the linear guide or body.

Top mounting

Front mounting

LEPY／LEPS Series Specific Product Precautions 2

\triangle
Be sure to read this before handling the products．Refer to page 984 for safety instructions，pages 985 to 990 for electric actuator precautions．

Mounting

セ～～

\triangle Warning

6．When mounting the product，tighten the mounting screws within the specified torque range．
Tightening the screws with a higher torque than recommended may re－ sult in a malfunction，while tightening with a lower torque can result in the displacement of the mounting position or，in extreme conditions，the actuator could become detached from its mounting position．

Side mounting（Body mounting through－hole）

Model	Screw size	Max．tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEPY6	$\mathrm{M} 3 \times 0.5$	0.9
LEPS6		
LEPY10	$\mathrm{M} 4 \times 0.7$	1.4
LEPS10		

Side mounting（Body tapped）

Model	Screw size	Max．tightening torque［ $\mathrm{N} \cdot \mathrm{m}$ ］	Max．screw－in depth［mm］
LEPY6	M4 x 0.7	1.4	7
LEPS6			
LEPY10	M5 x 0.8	3.0	9
LEPS10			

Bottom mounting（Body tapped）

Model	Screw size	Max．tightening torque $[\mathrm{N} \cdot \mathrm{m}]$ Max．screw－in depth $[\mathrm{mm}]$	
LEPY6	M4 $\times 0.7$	1.4	5
LEPS6			
LEPY10	M5 $\times 0.8$	3.0	9
LEPS10			

Rod side mounting（Rod type only）

Model	Screw size	Max．tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max．screw－in depth $[\mathrm{mm}]$
LEPY6	$\mathrm{M} 4 \times 0.7$	1.4	7
LEPY10	$\mathrm{M} 5 \times 0.8$	3.0	9

7．When it is necessary to operate the product by the manual override screw，check the position of the manual override and leave necessary space．
Do not apply excessive torque to the manual override screw．Fail－ ure to do so may result in damage or malfunction．

8．When an external guide is used，connect it in such a way that no impact or load is applied to it．
This may cause a malfunction due to an increase in sliding resistance，or use a freely moving connector（such as a floating joint）．

Handling

\triangle Caution

1．To conduct a pushing operation，be sure to set the product to［Pushing operation］．
Do not allow a workpiece to collide with the rod／table during the positioning operation or within the position－ ing range．
Failure to do so may result in damage lead to or malfunction．If the operation is interrupted or stopped during the cycle：When the pushing operation command is output immediately after restarting the operation，the direction of movement depends on the position of restart．
2．Use the product within the specified pushing speed range for the pushing operation．
Failure to do so may result in damage or malfunction．

Model	Lead	Pushing speed $[\mathrm{mm} / \mathrm{s}]$
LEPY6	4	10
LEPS6	8	20
LEPY10	5	10
LEPS10	10	20

3．For pushing operations，ensure that the force is applied in the direction of the rod axis．
4．The moving force should be the initial value．
If the moving force is set below the initial value，it may cause the generation of an alarm．

Model	Motor size	Moving force［\％］
LEPY6 LEPS6	Basic	150
LEPY10 LEPS10	Basic	150
	Compact	

5．The actual speed of this actuator is affected by the load．
Check the model selection section of the catalog．
6．Do not scratch or dent the sliding parts of the rod，by striking or attaching objects．
The rod is manufactured to precise tolerances，even a slight deformation may cause a malfunction．
7．Avoid using the electric actuator in such a way that rotational torque would be applied to the rod．
It may cause deformation of the non－rotating sliding part，leading to clearance in the internal guide or an increase in the sliding resistance．Refer to the table below for the approximate values of the allowable range of rotational torque．

Allowable rotational torque $[\mathrm{N} \cdot \mathrm{m}$ ］or less	LEPY6 \square	LEPY10 \square

Handling

\triangle Caution

8. Do not operate by fixing the rod and moving the actuator body.
Excessive load will be applied to the rod, leading to damage to the actuator and reduced the life of the product.

9. Return to origin

1) Do not apply a load, impact, or resistance in addition to the transferred load during return to origin
Additional force will cause the displacement of the origin position since it is based on the detected motor torque.
2) When the return to origin is set with <Basic parameter> [Origin offset], it is necessary to change the current position of the product. Recheck the value of step data.
3) It is recommended to set the directions of return to origin and pushing in the same direction in order to enhance the measurement accuracy during the pushing operation.
10. There is no backlash effect in the pushing operation.

The return to origin is done by the pushing operation.
The position can be displaced by the effect of the backlash during the positioning operation.
Take the backlash into consideration when setting the position.
<Backlash>

Model	Backlash $[\mathrm{mm}]$
LEPY6	0.2 or less
LEPS6	0.2 or less
LEPY10	0.2 or less
LEPS10	0.2 or less

11. Never allow the rod/table to collide with the stroke end except during return to origin.
This may damage the inner parts.
12. INP output signal
1) Positioning operation

When the product comes within the set range of the step data [In position], the INP output signal will turn ON.
Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective pushing force exceeds the step data
[Trigger LV], the INP output signal will turn ON.
When [Pushing force] setting and [Trigger LV] are set less than [Pushing force], use the product within the specified range of the [Pushing force] and [Trigger LV].
a) To ensure that the actuator pushes the workpieces with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
b) If the [Trigger LV] is set lower than the [operation pushing force (current pushing force) for the pushing operation], the pushing force will exceed the trigger LV from the pushing start position and the INP output signal will turn ON before pushing the workpieces. Increase the pushing force, or change the work load so that the current pushing force becomes smaller than the trigger LV.

<Pushing force and trigger LV range>

Model	Motor size	Pushing force set value [\%]
LEPY6 LEPS6	Basic	70 to 100
LEPY10 LEPS10	Basic	50 to 100

13. For pushing operations, set the product to a position at least 0.5 mm away from a workpiece. (This position is referred to as the pushing start position.)
The following alarms may be generated and operation may become unstable if setting is not done correctly.
a. "Posn failed"

The product cannot reach the pushing start position due to variations in the width of workpieces.
b. "Pushing ALM"

The product is pushed back from the pushing start position after starting to push.
c. "Deviation over flow"

Displacement exceeding the specified value is generated at the pushing start position.
14. For pushing operations, use the product within the duty ratio range below.
The duty ratio is the fraction of time that the product can keep pushing.

Model	Motor size	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
LEPY6 LEPS6	Basic	70	100	-
		80	70	10
	100	50	5	

Model	Motor size	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
LEPY10 LEPS10	Basic	60 or less	100	-
		70	30	3
	100	15	1	

Model	Motor size	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
LEPY10 LEPS10	Compact	70 or less	100	-
		80	70	10
		100	50	5

15. When mounting the product, secure a bending diameter of $\mathbf{4 0} \mathbf{~ m m}$ or longer for the motor cable.

Maintenance

© Warning

1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacing the product.
